
A Cryptographic Processor for Arbitrary
Elliptic Curves over GF(2

m
)

Hans Eberle, Nils Gura, Sheueling Chang-Shantz
Sun Microsystems Laboratories

fNils.Gura, Hans.Eberle, Sheueling.Changg@sun.com

Abstract

We describe a cryptographic processor for Elliptic Curve Cryptography (ECC). ECC is

evolving as an attractive alternative to other public-key schemes such as RSA by o�ering

the smallest key size and the highest strength per bit. The processor performs point mul-

tiplication for elliptic curves over binary polynomial �elds GF (2m). In contrast to other
designs that only support one curve at a time, our processor is capable of handling arbi-

trary curves without requiring recon�guration. More speci�cally, it can handle both named

curves as standardized by NIST as well as any other generic curves up to a �eld degree of

255. EÆcient support for arbitrary curves is particularly important for the targeted server

applications that need to handle requests for secure connections generated by a multitude of

heterogeneous client devices. Such requests may specify curves which are infrequently used

or not even known at implementation time.

Our processor implements 256-bit modular multiplication, division, addition and squar-

ing. The multiplier constitutes the core function as it executes the bulk of the point multi-

plication algorithm. We present a novel digit-serial modular multiplier that uses a hybrid

architecture to perform the reduction operation needed to reduce the multiplication result:
Hardwired logic is used for fast reduction of named curves and the multiplier circuit is reused

for reduction of generic curves. The performance of our FPGA-based prototype, running at

a clock frequency of 66.4 MHz, is 6955 point multiplications per second for named curves

over GF (2163) and 3308 point multiplications per second for generic curves over GF (2163).

1 Introduction

In this paper, we describe the architecture and implementation of a processor for Elliptic
Curve Cryptography (ECC). ECC is a public-key cryptosystem that is rapidly evolving as
an attractive alternative to other schemes such as RSA by o�ering the smallest key size
and the highest strength per bit. For example, a 163-bit ECC key o�ers the same security
strength as a 1024-bit RSA key. The ratio of key sizes is going to favor ECC even more as
larger keys are adopted. As a result of the smaller key size, some cryptographic operations
such as signing can be executed much faster with ECC [7]. For this reason, ECC is most
interesting to emerging wireless technologies that use Internet-ready mobile phones, PDAs,
smart cards and sensor networks. Since these types of client devices have modest to little
compute resources, the computational eÆciency makes ECC a good match.
Several standards have been created to specify the use of ECC. The US government

has adopted ECC for the Elliptic Curve Digital Signature Algorithm (ECDSA) and rec-



ommended a set of curves. For binary polynomial �elds, the curves cover key sizes of 163,
233, 283, 409 and 571 bit [15]. Additional curves for commercial use were recommended
by the Standards for EÆcient Cryptography Group (SECG) [3]. Also, e�orts are underway
to include ECC into security protocols such as OpenSSL - SSL/TLS is today's dominant
Internet security protocol [12, 6].
Terminating secure connections on the server side not only demands high computational

power but also exibility in responding to client devices that are limited in the set of
cryptographic algorithms supported. As clients are often limited in processing power and
memory capacity, they may be capable of supporting only a small number of curves. With
respect to ECC, a client might possibly support a single curve only. To be able to establish
a secure connection and, with it, provide service, a server, in turn, is required to be exible
enough to support any such curve requested by a client. While a server certainly needs to
implement the standardized curves and the associated irreducible polynomials, it should
further implement any other arbitrary curve and, thus, any arbitrary irreducible polynomial.
In the following, we refer to the former as named curves and to the latter as generic curves.
There are several reasons why generic curves need to be supported. The standards only
recommend curves and, thus, new curves might emerge in the future. Furthermore, curves
might be abandoned for security reasons and replaced by di�erent ones that were not known
at implementation time.
While previous work has targeted implementations optimized for speci�c curves, our de-

sign has the unique property that it provides optimized performance for multiple named
curves and support for arbitrary generic curves. In a previous publication [9], we introduced
a technique called partial reduction that allows for generic curve-independent implemen-
tations of ECC. While our previous publication only described a �rmware implementation
of this technique, we are now introducing a novel digit-serial multiplier that implements
modular multiplication in hardware for both named and generic curves thereby signi�cantly
improving performance for the latter.

2 Related Work

Hardware and �rmware implementations of ECC point multiplication over di�erent �elds
GF (2m) have been reported in numerous publications. A design for GF ((28 � 17)17), op-
timized for 8-bit processors, is described by Woodbury et al. in [16]. The implementation
targets a SmartCard based on an Intel 8051 microcontroller. Orlando and Paar describe
a programmable elliptic curve processor for recon�gurable logic in [13]. Di�erent curves
can be handled by parameterizing the hardware architecture and recon�guring the logic.
Bednara et al. [2] designed an FPGA-based ECC processor architecture that allows for
using multiple squarers, adders and multipliers. Two prototypes were synthesized for
GF (2191). Agnew et al. [1] built an ASIC implementing ECC point multiplication for
GF (2155). Goodman and Chandrakasan [5] designed a generic public-key processor that
executes modular operations on integer and binary polynomial �elds. The data path can be
recon�gured to support di�erent �eld degrees. Point multiplication over binary polynomial
�elds is computed by a microcoded double-and-add algorithm. To our knowledge, this is
the only implementation that supports GF (2m) for variable �eld degrees m. However, the
architecture is optimized for low power consumption and its performance cannot be scaled
to levels required by server-type applications. All other implementations described above



target either one or a small number of speci�c curves. That is, none of them can handle
a curve that is not speci�ed at implementation time without requiring the software to be
modi�ed or the hardware to be recon�gured.

3 ECC Processor Architecture

We chose a microprogrammable architecture for the ECC processor. The microprogram
is stored in static memory and uploaded by the host at initialization time. Although the
functionality of the ECC processor is �xed, controlling program execution by a micropro-
gram rather than hardwired control logic provided an ideal platform for experimenting with
di�erent point multiplication algorithms.

3.1 Data Path

DIV MUL ALU
Reg.file
(R0..R7,
RM,RC)

DMEM

SBUSPCI
256

256DBUS

Control UnitIMEM

Figure 1. Data Path and Control Unit.

We decided on a bus structure
for the data path to keep the de-
sign as exible as possible. This
design decision proved to be valu-
able as it allowed us to easily
change the function units with-
out a�ecting the communication
infrastructure. Figure 1 shows the
data path and the control unit.
Dual-ported instruction and data
memories IMEM and DMEM con-
nect the ECC processor with the
PCI bus of the host system. The

internal data path is n = 256 bits wide, that is, the busses, the register �le and memories
are 256 bits wide and the function units operate on 256-bit operands. The data memory
DMEM, the registers and the function units are connected by the busses SBUS and DBUS.
The data memory DMEM has a capacity of 8 kBytes and stores parameters and variables.
The register �le contains eight general purpose registers R0-R7, a register RM that holds
the irreducible polynomial and a register RC that speci�es the �eld degree and the type of
curve; more speci�cally, it speci�es whether a named curve or a generic curve is to be pro-
cessed. The function units include a modular divider (DIV), a modular multiplier (MUL),
and a multifunction arithmetic and logic unit (ALU). The ALU provides addition, modular
squaring, shift, and comparison functions.

3.2 Instruction Set

The ECC processor implements a load/store architecture. That is, memory can be
accessed by load and store operations only, and all arithmetic instructions are limited to
register operands. Instructions fall into three categories: Memory instructions, arithmetic
instructions, and control instructions. All instructions have a �xed length of 16 bits. Table
1 contains the complete instruction set.



Opcode Name Semantics Cycles

Memory Instructions
LD DMEM,RD Load DMEM ! RD 3
ST RS,DMEM Store RS ! DMEM 3
Arithmetic Instructions
DIV RS0,RS1,RD Divide (RS1/RS0) mod M ! RD � 2m+4 / � 2n+4
MUL RS0,RS1,RD Multiply (RS0*RS1) mod M ! RD 7/8/10/12
ADD RS0,RS1,RD Add RS0+RS1 ! RD 3

(RD==0) ! EQ
SQR RS,RD Square (RS*RS) mod M ! RD 3

(RD==0) ! EQ
SL RS,RD Shift Left fRS[254..0],0g ! RD 3

RS[255] ! MZ
(RD==0) ! EQ

Control Instructions
BMZ ADDR Branch branch if MZ == 0 2
BEQ ADDR Branch branch if EQ == 1 4
BNC ADDR Branch branch if NC is set 2
JMP ADDR Jump jump 2
NOP No Operation no operation 1
END End end program execution

Table 1. Instruction Set.

3.3 Control Unit

The control unit consists of the instruction memory IMEM that has a capacity of 1 kByte
or 512 instructions and a �nite state machine (FSM) that controls the data path according
to the instructions fetched. The FSM can handle variable execution times as occur for
MUL and DIV instructions. For the multiplier, the cycle count varies with the �eld degree
m, and for the divider, the cycle count depends on both the �eld degree m and the values
of the operands.

fetch load RS0 execute store RD

fetch load RS0 execute

I0

I1

load RS1

load RS1 store RD

fetch load RS0 execute store RD

fetch load RS0 execute

I0

I1

load RS1

load RS1 store RD

executeexecute execute

fetchI2 load RS0

(a)

(b)

Figure 2. Overlapped (a) and Parallel (b) In-
struction Execution.

Program execution times are fur-
ther optimized by overlapping in-
struction execution and executing in-
structions in parallel. The control
unit overlaps the execution of arith-
metic instructions by prefetching the
instruction as well as preloading the
�rst source operand. This is illus-
trated in Figure 2a. Data depen-
dencies are detected by the assembler
and are considered programming er-
rors. Often, these dependencies can
be resolved by swapping the source
operands. However, for SQR, SL,
ST, or DIV, such a dependency can-

not be removed as suggested and a NOP instruction needs to be inserted.
Parallel execution of instructions is implemented in that an ADD or SQR instruction

can be executed in parallel to a MUL instruction if there are no data dependencies. This is
shown in Figure 2b The choice of these particular instructions is motivated by an analysis
of the program code for point multiplication. As will be shown in Table 4, the MUL
instruction is the most frequently executed instruction and, in many instances, can be
executed in parallel with either an ADD or a SQR instruction.



3.4 Function Units

The function units perform modular arithmetic operations on binary polynomials in
standard basis representation. The ALU implements the two arithmetic instructions ADD
and SQR and the logic instruction SL. ADD translates into a bit-wise XOR of the two source
operands. SQR requires the insertion of zeroes between the bits of the source operand and
the subsequent reduction of the so expanded source operand. A hardwired reduction circuit
is used that can only handle named curves.
The ECC processor implements a modular divider based on an algorithm described by

Chang-Shantz [4] that has similarities to Euclid's GCD algorithm. The multiplier consti-
tutes the core of the data path and is described in detail in the next section.

4 Multiplier

As the performance analysis contained in Section 6 shows, more than half the number
of cycles required to process a point multiplication are spent in the multiplier. For this
reason, we optimized its performance as much as possible and spent a signi�cant part of
the chip resources on it.
We have implemented a number of digit-serial modular multiplier designs based on al-

gorithms described by Song and Parhi in [14]. Our �rst design described in [8] used a
least signi�cant digit (LSD) �rst multiplier that could perform modular multiplication in
hardware for named curves only. In addition, the multiplier could generate an unreduced
product so that reduction for generic curves could be performed by microcode. With this
implementation, generic curves were processed at a tenth of the throughput achieved for
named curves. Here, we describe a novel multiplier design that performs modular multipli-
cation for both types of curves in hardware thereby signi�cantly improving the performance
for generic curves. The new design is based on a most signi�cant digit (MSD) �rst multi-
plier. We also considered the LSD �rst multiplier but, as we will explain later, found that
pipelining for the MSD multiplier can be done more eÆciently.
We will �rst describe an MSD �rst multiplier that works for named curves only, before

we describe the �nal design that can handle both named and generic curves. The pseudo
code looks as follows:

X[n-1..0] := x*td�b(n�m)=dc; Y[n-1..0] := y*td�b(n�m)=dc;

P[n+d-1..0] := 0; Z[n-1..0] := 0;

for i := 0 to dm/de-1 do

P[n+d-1..0] := X[n-1..n-d] * Y[n-1..0];

X[n-1..0] := shift_left(X[n-d-1..0],d);

Z[n-1..0] := (shift_left(Z[n-1..0],d) + P[n+d-1..0]) mod M*td�b(n�m)=dc;

end;

Figure 3a shows a block diagram of an MSD �rst multiplier for named curves of �eld
degrees 163, 193, and 233. The following three computation steps are performed in parallel:
(i) the MSD of X is multiplied with Y ; (ii) X is shifted to the left by d bits; (iii) Z is shifted
to the left by d bits, added to P , and subsequently reduced. It takes dm=de+1 clock cycles
to perform the modular multiplication, that is, the number of multiplication steps executed
depends on m. This optimization requires that the registers X and Y are loaded with the
operands shifted to the left by d�b(n�m)=dc bits. In our implementation, we only support



a shift by d bits. That is, for n = 256 and d = 64, the modular multiplication takes �ve
clock cycles for m > 192 and four clock cycles for m � 192.

×

+

X Y

P

d

nd

n+d

n+d

Z
n

m

red163
red193
red233

n+d

n+d

d

SBUS
n

den

SBUS
n

den

DBUS

den
n

×

+

X Y

P

d
nd

n+d

n+d

Z
n

n+d

red163
red193
red233

DBUS

n+d n+d

en

M’

SBUS

Y’

n

nn

d (MSD)

Xh Xl

SBUS
n

den

den

den

den

den
n

(a) (b)

Figure 3. MSD First Multiplier for Named Curves (a) and Generic MSD First Mul-
tiplier for Generic and Named Curves (b).

We further developed a generic MSD �rst multiplier shown in Figure 3b that can handle
both named and generic curves. It uses a hardwired reducer for named curves and it
reuses the multiplier circuit to perform reduction for generic curves. Reduction for generic
curves is based on the partial reduction algorithm. This technique reduces to the data path
width n rather than to the �eld size m, with m � n. This avoids costly shift and mask
operations to extract �eld-sized operands smaller than the data path width. In comparison
with Montgomery modular multiplication, our scheme uses fewer multiplications; this is
particularly true when a large multiplier is used.
Partial reduction works as follow. For a multiplication c0 = a � b with a; b 2 GF (2m),

deg(a) < n, deg(b) < n, c0 can be partially reduced to c � c0 mod M , deg(c) < n as
follows: For an integer n � m, c0 can be split up into two polynomials c0;h and c0;l with
deg(c0;h) < n� 1, deg(c0;l) < n. Subsequent polynomials cj+1 can be computed by setting

cj+1 = cj;h � t
n�m � (M � tm) + cj;l = cj+1;h � t

n + cj+1;l

until cj;h = 0, deg(cj) < n

A more detailed description of partial reduction can be found in [9].
The pseudo code for performing modular multiplication on generic curves looks as follows:



X[n-1..0] := x*td�b(n�m)=dc; Y[n-1..0] := y*td�b(n�m)=dc;

P[n+d-1..0] := 0; Z[n-1..0] := 0;

for i := 0 to dm/de-1 do

P[n+d-1..0] := X[n-1..n-d] * Y[n-1..0];

X[n-1..0] := shift_left(X[n-1..0],d);

r[n+d-1..0] := shift_left(Z[n-1..0]) + P[n+d-1..0];

Z[n-1..0] := r[n-1..0] + r[n+d-1..n] * (M � tm) � tn�m;

end;

There is one partial product generator
N

that is alternately used to perform a multi-
plication step and a reduction step. Rather than strictly interleaving these two steps, the
computation begins with executing two multiplication steps before the �rst reduction step
is executed. That is, P and Z are computed in the order fP0; P1; Z0; P2; Z1; ::g such that
Pi is only needed two cycles later when Zi+1 is calculated.
We also implemented a similar multiplier using the LSD �rst method. Comparing the two

implementations we found that the MSD multiplier can be pipelined more eÆciently saving
one state for generic curves. The reason is that dependencies between partial products and
reduction results are less stringent for the MSD �rst multiplier.
Note that we have assumed that it takes a single multiplication to execute a reduction

step, which poses some restrictions on the irreducible polynomial. When reducing r[n+d�
1::0] = shiftleft(Z[n� 1::0]) +P [n+ d� 1::0], we assume that the partially reduced result
of the multiplication r[n � 1::0] + r[n+ d � 1::n] � ((M � tm) � tn�m) can be stored in an
n-bit register. This requirement is equivalent to the partial reduction being executable in a
single iteration. As explained in [9] this is true if d � m� k, where k stands for the power
of the second highest term of the irreducible polynoimalM . All polynomials recommended
by NIST and SECG satisfy this condition.

4.1 Implementation

We prototyped the cryptographic processor in a Xilinx Virtex-II XCV2000E-7 FPGA.
Area constraints were provided for the ALU, the divider and the register �le, whereas the
multiplier was left unconstrained. This way, these blocks do not interfere with each other
when resources are allocated while, at the same time, as many resources as needed can be
allocated to the multiplier which constitutes the critical path. No other constraints and, in
particular, no manual placement was required to obtain a synthesized design that runs at
the targeted frequency of 66.4 MHz which is derived from the PCI clock.

Unit LUTs FFs

Generic MSD �rst Multiplier 14797 2948
ALU 1345 279
Divider 2678 1316

Full Design 20068 6321

Table 2. Usage of Chip Resources.

Table 2 quanti�es the resources used by the
function units. The listed resources are 4-input
look-up tables (LUTs) and ip-ops (FFs). The
multiplier clearly dominates the size of the de-
sign as it uses 74% of the LUTs and 47% of
the FFs. Since multiplication is the single most
time-critical operation, its dominance, neverthe-
less, seems justi�ed.

5 Point Multiplication Code

Various algorithms have been proposed to eÆciently compute point multiplications [10].
We experimented with di�erent point multiplication algorithms and settled on Mont-



gomery's point multiplication algorithm using projective coordinates as proposed by L�opez
and Dahab [11]. A fragment of the assembly code implementing the inner loop of Mont-
gomery's double and add algorithm is shown in Table 3. The comments refer to the coor-
dinates and curve parameters as found in [11]. The code is highly optimized in that the
computation of the point coordinates is interleaved to achieve a higher degree of instruction-
level parallelism. We use a single code base for named curves and generic curves. This is
accomplished by executing MUL and SQR instructions according to the curve type. For
named curves, MUL denotes a multiplication with hardwired reduction and, for generic
curves, it is executed as a multiplication with partial reduction. The execution of an SQR
instruction is slightly more complicated. For named curves, SQR is executed by the ALU.
And for generic curves, the SQR instruction is translated into a MUL instruction that is
executed as a multiplication using partial reduction. We use the BNC (branch if named
curve) instruction in the few places where the program code di�ers for the two curve types.
As we had explained in Section 3.3 we make use of the fact that the multiplier and

the ALU can operate in parallel. That is, if there are no data dependencies, the MUL
instruction can be executed in parallel with either an ADD or a SQR instruction. Since
the SQR instruction is executed by the ALU for named curves and by the multiplier for
generic curves, the order in which instructions are executed di�ers depending on the curve
type even though the code is the same.
Data dependencies are detected in di�erent ways. The assembler checks for dependencies

that would prevent overlapped instruction execution. In these cases, the programmer needs
to resolve the dependencies by reordering operands or inserting NOP instructions. With
respect to parallel instruction execution, the control unit examines dependencies and decides
whether instructions can be executed in parallel or not.

Instructions Execution for Named Curves Execution for Generic Curves
R0 = X1; R1 = Z1; R2 = X2; R3 = Z2

MUL(R1,R2,R2) R2 = Z1 �X2 MUL(R1,R2,R2);SQR(R1,R1) MUL(R1,R2,R2)

SQR(R1,R1) R1 = Z2
1 SQR(R1,R1)

MUL(R0,R3,R4) R4 = X1 � Z2 MUL(R0,R3,R4);SQR(R0,R0) MUL(R0,R3,R4)

SQR(R0,R0) R0 = X2
1 SQR(R0,R0);ADD(R2,R4,R3)

ADD(R2,R4,R3) R3 = Z1 �X2 +X1 � Z2 ADD(R2,R4,R3)

MUL(R2,R4,R2) R2 = Z1 �X2 �X1 � Z2 MUL(R2,R4,R2);SQR(R1,R4) MUL(R2,R4,R2)

SQR(R1,R4) R4 = Z4
1 SQR(R1,R4)

MUL(R0,R1,R1) R1 = Z2
1 �X

2
1 MUL(R0,R1,R1);SQR(R3,R3) MUL(R0,R1,R1)

SQR(R3,R3) R3 = Z3 = (Z1 �X2 +X1 � Z2)2 SQR(R3,R3)

LD(dmem b,R5) R5 = b LD(dmem b,R5) LD(dmem b,R5)

MUL(R4,R5,R4) R4 = b � Z4
1 MUL(R4,R5,R4);SQR(R0,R0) MUL(R4,R5,R4)

SQR(R0,R0) R0 = X4
1 SQR(R0,R0)

LD(dmem Px,R5) R5 = X LD(dmem Px,R5) LD(dmem Px,R5)

MUL(R3,R5,R5) R4 = X � (Z1 �X2 +X1 � Z2)2 MUL(R3,R5,R5);ADD(R4,R0,R0) MUL(R3,R5,R5);ADD(R4,R0,R0)

ADD(R4,R0,R0) R0 = X4
1 + b � Z4

1
ADD(R2,R5,R2) R2 = X � Z3 + (Z1 �X2) � (X1 � Z2) ADD(R2,R5,R2) ADD(R2,R5,R2)

Table 3. Code Execution for Named and Generic Curves.

The code fragment in Table 3 shows no data dependencies for any MUL/SQR or MUL/ADD
instruction sequence. Hence, for named curves, all MUL/SQR and MUL/ADD sequences
are executed in parallel.
Furthermore, since there are no data dependencies between subsequent arithmetic in-

structions, instruction execution can be overlapped, thus, saving one cycle per instruction.
Code execution looks di�erent for generic curves as illustrated. In this case, all MUL/SQR

sequences have to be executed sequentially as SQR instructions are now executed as MUL



instructions. However, there still is one SQR/ADD sequence and one MUL/ADD sequence
left that can be executed in parallel.

6 Evaluation

This section contains two parts. First, we look at the distribution of instructions executed
by a point multiplication. Next, we compare performance numbers for point multiplication
executed in hardware and software.

6.1 Instruction Distribution

Table 4 gives the distribution of instructions executed by the point multiplication opera-
tion for named and generic curves, respectively. For point multiplication on named curves
over GF (2163), �eld multiplications account for almost 62% of the execution time. In the
case of generic curves, �eld multiplications even constitute 81% of the execution time. It
is, therefore, justi�ed to allocate a signi�cant portion of the available hardware resources
to the multiplier. Parallel and overlapped execution save 36% of the execution time for
named curves and 20% for generic curves when compared to sequential execution. There
is still room for further improvements since the control ow instructions BMZ, BEQ, SL,
JMP and END consume almost 21% of the execution time when processing named curves
and 10% when processing generic curves. This time could be saved by separating control
ow and data ow.

Named Curves Generic Curves
Instruction #Instr. Cycles ms #Instr. Cycles ms

MUL 6 41 0.00062 818 7366 0.11093
MUL + ADD 166 996 0.01500 327 2943 0.04432
MUL + SQR 811 4866 0.07328 0 0 0.00000
SQR 2 4 0.00006 651 5859 0.08824
DIV 1 329 0.00495 2 902 0.01358
ADD 330 660 0.00994 170 340 0.00512
SL 326 978 0.01473 326 978 0.01473
ST 6 18 0.00027 8 24 0.00036
LD 334 668 0.01006 337 674 0.01015
BMZ 326 652 0.00982 326 652 0.00982
BEQ 1 4 0.00006 1 4 0.00006
BNC 2 4 0.00006 2 4 0.00006
JMP 162 324 0.00488 162 324 0.00488
END 1 2 0.00003 1 2 0.00003

total 9549 0.14381 20072 0.30229

Table 4. Decomposition of the Execution Time for GF (2163) Point Multiplication.

6.2 Point Multiplication Performance

Table 5 shows performance numbers for implementations of point multiplication in hard-
ware and software. The hardware implementation uses the prototype system described in
Section 4.1. The software implementation considers generic curves and does not contain
any curve-speci�c optimizations. It is executed on a 900 MHz Sun Fire�280R server. The
execution time of a point multiplication kP depends on the execution times of the arith-
metic operations in GF (2m) and the size of the integer k, which is mostly in the order of



the �eld degree m. The time needed for a point multiplication grows almost linearly with
the size of k between 1 � m � 192 and 193 � m � 256. The non-linear increase at m = 192
is caused by the multiplier that exhibits di�erent execution times based on the �eld degree.
By adding hardware support for generic curves, we were able to signi�cantly increase

performance for generic curves. In [9] we described a �rmware implementation with a per-
formance number of 1075 point multiplications per second for generic curves over GF (2163).
At 3308 point multiplications per second, our new design is roughly three times faster.
Compared with 6955 point multiplications per second for named curves over GF (2163), the
performance penalty for named curves is now roughly a factor of two which is low given
the complexity of the problem.

Curves Hardware Software Speedup
ops/s ms/op ops/s ms/op

Named
GF (2163) 6955 0.14 322 3.11 21.6
GF (2193) 5333 0.19 294 3.40 18.1
GF (2233) 4423 0.23 223 4.48 19.8
Generic
GF (2163) 3308 0.30
GF (2193) 2375 0.42
GF (2233) 1980 0.51

Table 5. Hardware and Software Performance.

The speedup of the hardware implementation over the software implementation is a
factor of about 20 for named curves. The poor software performance is mainly due to
the lack of support for GF (2m) arithmetic in general-purpose CPUs. While the software
implementation is optimized for irreducible polynomials that are either pentanomials or
trinomials, the hardware implementation is more generic in that it can operate on arbitrary
irreducible polynomials.

7 Conclusions

We presented an ECC processor that provides optimized performance for a number of
named curves and support for generic curves over arbitrary �elds GF (2m);m � 255. This
exibility is needed by server applications that have to perform large numbers of point
multiplications on di�erent curves.
We described a novel modular multiplier that is capable of handling named curves as well

as generic curves. Processing the two types of curves di�ers in that hardwired reduction
logic is used for named curves and the multiplier logic is reused to perform reduction
for generic curves. Since reduction for generic curves reuses existing logic, the additional
resources needed to support generic curves are minimal. We implemented a generic MSD
�rst multiplier with operand size n = 256 and digit size d = 64. Including the cycles needed
for loading and storing operands, it takes seven cycles to perform a modular multiplication
for named curves over �elds GF (2m);m � 192, eight cycles for named curves over �elds
GF (2m); 193 � m � 255, 10 cycles for generic curves over �elds GF (2m);m � 192, and 12
cycles for generic curves over �elds GF (2m); 193 � m � 255.
Our ECC processor uses a common code base to implement point multiplication for

both named curves and generic curves. To make this possible, squaring instructions are



dynamically translated into multiplication instructions in the case of generic curves since
modular squaring is implemented in hardware for named curves only.
We optimized performance by exploiting parallelism found in Montgomery's point mul-

tiplication algorithm for projective coordinates. More speci�cally, we allow multiplication
instructions, which are the most frequently executed instructions, to be executed in paral-
lel with either add or square instructions. Together with overlapped instruction execution,
parallel execution reduces the execution time for a point multiplication operation by 36%
for named curves and 20% for generic curves.
We are currently working on a cryptographic processor that exploits a common archi-

tecture that is capable of executing point multiplication for both GF (p) and GF (2m).

References

[1] G. B. Agnew, R. C. Mullin, and S. A. Vanstone. An implementation of elliptic curve cryptosystems
over F2155 . In IEEE Journal on Selected Areas in Communications, 11(5):804{813, June 1993.

[2] M. Bednara, M. Daldrup, J. von zur Gathen, and J. Shokrollahi. Recon�gurable implementation of
elliptic curve crypto algorithms. Recon�gurable Architectures Workshop, 16th International Parallel
and Distributed Processing Symposium, April 2002.

[3] Certicom Research. Sec 2: Recommended elliptic curve domain parameters. Standards for EÆcient
Cryptography Version 1.0, September 2000.

[4] S. Chang-Shantz. From euclid's gcd to montgomery multiplication to the great divide. Technical report,
Sun Microsystems Laboratories TR-2001-95, June 2001. http://research.sun.com/.

[5] J. Goodman and A. P. Chandrakasan. An energy-eÆcient recon�gurable public-key cryptography
processor. IEEE Journal of Solid-State Circuits, 36(11):1808{1820, November 2001.

[6] V. Gupta, S. Blake-Wilson, B. M�oller, and C. Hawk. ECC Cipher Suites for TLS. IETF Internet
Draft, August 2002. http://www.ietf.org/internet-drafts/draft-ietf-tls-ecc-02.txt.

[7] V. Gupta, S. Gupta, S. Chang, and D. Stebila. Performance analysis of elliptic curve cryptography for
ssl. In ACM Workshop on Wireless Security, September 2002. Atlanta, Georgia.

[8] N. Gura, H. Eberle, and S. Chang-Shantz. An end-to-end systems approach to elliptic curve cryptog-
raphy. In CHES '2002 Workshop on Cryptographic Hardware and Embedded Systems, Lecture Notes
in Computer Science. Springer-Verlag, August 2002. Redwood City, California.

[9] N. Gura, H. Eberle, and S. Chang-Shantz. Generic implementations of elliptic curve cryptography using
partial reduction. In 9th ACM Conference on Computers and Communications Security, November
2002. Washington, DC.

[10] D. Hankerson, J. L. Hernandez, and A. Menezes. Software implementation of elliptic curve cryptography
over binary �elds. In CHES '2000 Workshop on Cryptographic Hardware and Embedded Systems,
Lecture Notes in Computer Science 1965. Springer-Verlag, August 2000.

[11] J. L�opez and R. Dahab. Fast multiplication on elliptic curves over G F (2m) without precomputation. In
CHES '99 Workshop on Cryptographic Hardware and Embedded Systems, Lecture Notes in Computer
Science 1717. Springer-Verlag, August 1999.

[12] OpenSSL Project. http://www.openssl.org/.

[13] G. Orlando and C. Paar. A high-performance recon�gurable elliptic curve processor for G F (2m). In
CHES '2000 Workshop on Cryptographic Hardware and Embedded Systems, Lecture Notes in Computer
Science 1965. Springer-Verlag, August 2000.

[14] L. Song and K. K. Parhi. Low-energy digit-serial/parallel �nite �eld multipliers. IEEE Journal of
VLSI Signal Processing Systems, (19):149{166, 1998.

[15] U.S. Department of Commerce and National Institute of Standards and Technology. Digital signature
standard (dss). Federal Information Processing Standards Publication FIPS PUB 186-2, January 2000.

[16] A. D. Woodbury, D. V. Bailey, and C. Paar. Elliptic curve cryptography on smart cards without copro-
cessors. In The Fourth Smart Card Research and Advanced Applications (CARDIS2000) Conference,
September 2000. Bristol, UK.

Sun, Sun Microsystems, the Sun logo and Sun Fire 280R are trademarks or registered trademarks of Sun Mi-
crosystems, Inc. in the United States and other countries.


